Cardio-metabolic disease risk

and HIV status in rural South

Africarestablishing a baseline

Samuel J Clark, F Xavier Gómez-Olivé, Brian Houle, Margaret Thorogood, Kerstin Klipstein-Grobusch, Nicole Angotti, Chodziwadziwa Kabudula, Jill Williams, Jane Menken, Stephen Tollman

INDEPTH Network ISC 2015
Addis Ababa, Ethiopia, 11-13 November

Cardiometabolic disease risk and HIV status in rural South Africa: establishing a baseline

Samuel J Clark ${ }^{1,2,3,6,7}$, F Xavier Gómez-Olivé ${ }^{1,6}$, Brian Houle ${ }^{1,2,9}$, Margaret Thorogood ${ }^{1,3,8}$, Kerstin Klipstein-Grobusch ${ }^{3,4}$, Nicole Angotti, ${ }^{1,2,3,10}$, Chodziwadziwa Kabudula ${ }^{1,6}$, Jill Williams ${ }^{2,3}$, Jane Menken ${ }^{2,3}$ and Stephen Tollman ${ }^{1,3,5,6}$

Abstract

Background: To inform health care and training, resource and research priorities, it is essential to establish how non-communicable disease risk factors vary by HIV-status in high HIV burden areas; and whether long-term anti-retroviral therapy (ART) plays a modifying role. Methods: As part of a cohort initiation, we conducted a baseline HIV/cardiometabolic risk factor survey in 2010-2011 using an age-sex stratified random sample of ages $15+$ in rural South Africa. We modelled cardiometabolic risk factors and their associations by HIV-status and self-reported ART status for ages 18+ using sex-stratified logistic regression models. Results: Age-standardised HIV prevalence in women was 26% ($95 \% \mathrm{Cl} 24-28 \%$) and 19% ($95 \% \mathrm{Cl} 17-21$) in men. People with untreated HIV were less likely to have a high waist circumference in both women (OR 0.67; $95 \% \mathrm{Cl} 0.52-0.86$) and men (OR $0.42 ; 95 \% \mathrm{Cl} 0.22-0.82$). Untreated women were more likely to have low HDL and LDL, and treated women high triglycerides. Cardiometabolic risk factors increased with age except low HDL. The prevalence of hypertension was high (40% in women; 30% in men). Conclusions: Sub-Saharan Africa is facing intersecting epidemics of HIV and hypertension. In this setting, around half the adult population require long-term care for at least one of HIV , hypertension or diabetes. Together with the adverse effects that HIV and its treatment have on lipids, this may have serious implications for the South African health care system. Monitoring of the interaction of HIV, ART use, and cardiometabolic disease is needed at both individual and population levels.

Keywords: South Africa, Rural, Cardiometabolic risk, HIV/AIDS

Table of Contents

- Background
- Study setting
- Methods
- Analysis

Results
Conclusion

Background

- The world population is aging: 2050 will see population older than 60 outnumbering children under 15 years of age.
- Low and middle income countries will experience a 140\% increase in population 60 years and older by 2030, hosting 75% of the older population worldwide.
- The aging of the population will bring an increase of deaths due to NCDs: in 2010 reached 34.5 million worldwide (65.5% of all deaths) being 80% of them in LMIC.
- At present there are 35 million people living with HIV, 70% of them in sub-Saharan Africa.

Double epidemic in South Africa

- South Africa faces an epidemic of non-communicable diseases and their risk factors together with an aging population.
- Among national SAGE studies, South Africa had the highest hypertension prevalence (78\%).
- South Africa faces a huge epidemic of HIV with national prevalence in 2011 of 11% for all ages (5.4 million people).
- The ART program in South Africa is the largest worldwide increasing life expectancy in HIV+ population.

Research questions

- Is there an interaction between the HIV and NCD
epidemics?
- What is the role of ARTs in these interaction?
- How is these dual epidemic increasing the need for chronic care at Primary Health Care level?

Agincourt Study Site

26 villages over 450 sq km
 90,000 people; in 15,500 Households 2 health centers, 6 fixed clinics 3 hospitals $25-60 \mathrm{~km}$ away

Mpumalanga/Bushbuckridge Local Municipality

Kruger National Park

Medical Facilities

(†) Clinic
[] Health Centre
© Private Clinic

+ Visiting points
Schools

Methods: sample

- Field work August 2010 - June 2011
- Inclusion criteria:
- men and women aged 15 and older
- permanent residents the year prior to 2009 census.
- Random sample of $7,662 / 34,413$ men and women eligible from the 2009 HDSS census:
a Consented to be interviewed and tested ($\mathrm{n}=4362$)
- For this paper estimation sample was restricted to ages 18+ with complete covariate data ($\mathrm{n}=3641$).
- Age-sex stratified sample including an oversample of 284 adults 50+ years from a prior adult health study.

Methods: household visits

- Written informed consent.
- Questionnaires:
- Sexual behavior
- Adapted STEPS questionnaire
- Anthropometric measurements:
- Height, weight, blood pressure
- Biomarkers by finger prick:

- Five dried blood spots: HIV
- Point of care: lipids, glucose
- Participants with abnormal results were referred to the closest clinic.
HIV results were available in two health centers

Analysis

- Unadjusted prevalence of HIV and cardiometabolic risk factors by sex.
- Age-adjusted prevalence using the 2009 census population.
- Logistic regression to assess associations between cardio-metabolic risk factors, HIVstatus and socio-demographic variables.

Cardio-metabolic risk factors

Risk factors	Men	Women
High waist circumference	$>102 \mathrm{~cm}$	$>88 \mathrm{~cm}$
Obesity (body mass index $-\mathrm{kg} / \mathrm{m} 2$)		≥ 30

Systolic BP $\geq 140 \mathrm{mmHg}$ or
Hypertension
Diastolic BP $\geq 90 \mathrm{mmHg}$ or
Anti-hypertensive medication use
Low HDL cholesterol
$<1.03 \mathrm{mmol} / \mathrm{L} \quad<1.29 \mathrm{mmol} / \mathrm{L}$
High LDL cholesterol $\quad>3 \mathrm{mmol} / \mathrm{L}$
High Triglycerides $\quad \geq 1.7 \mathrm{mmol} / \mathrm{L}$
Diabetes (random glucose)
$\geq 11.1 \mathrm{mmol} / \mathrm{L}$

Self-reported use of ART

		Final HIV Status			PPV NPV	$\begin{aligned} & 97,6 \\ & 73,5 \end{aligned}$
		Positive	Negative			
Reported Under ART	Yes	249	6	255		
	No	533	1477	2010		
		782	1483	2265		

Sensitivit

Specificity

y

$$
31,8 \quad 99,6
$$

Only half of those 533 HIV+ who reported not using ART reported knowing their HIV status

RESULTS

Demographic and lifestyle by sex

	Women (\%) $(\mathbf{N}=\mathbf{2 1 6 3})$	Men (\%) $(\mathbf{N}=\mathbf{1 4 7 8})$
Age (years)		
$18-29$	38	64
$30-49$	31	15
50+	23	21
Formal education, years	10	11
\quad None	10	
1-5	67	80
6+	1	21
Ever smoked	14	15
Currently employed	94	67
Alcohol frequency, past 30 days	4	17
None	2	12
1 - 3 days/month	1	4
1 - 4 days/week		
5+ days/week	47	38
Physical activity score	34	40
Low	18	22
Moderate		
High		

${ }^{\text {a }}$ Based on the International Physical Activity Questionnaire (IPAQ).

Measured and Adjusted HIV prevalence
 Measured (95\% CI)

Unadjusted and age-adjusted prevalence of HIV and cardio-metabolic risk factors by sex

	Women		Men	
	Unadjusted	Age-adjusted	Unadjusted	Age-adjusted
	$\%[95 \%$ CI]	$\%[95 \%$ CI]	$\%[95 \%$ CI]	$\%[95 \%$ CI]
HIV +	$23[21,24]$	$26[24,28]$	$10[9,11]$	$19[17,21]$
Hypertension (whole sample)	$40[38,43]$	$39[37,41]$	$30[27,33]$	$37[35,40]$
Hypertension (HIV negative)	$40[38,43]$	$40[37,42]$	$29[26,32]$	$37[35,41]$
High waist circumference	$42[40,45]$	$43[41,45]$	$4[3,5]$	$6[5,8]$
Probable diabetes	$3[2,4]$	$2[2,3]$	$1[1,2]$	$2[1,3]$
Obesity	$25[23,27]$	$26[24,28]$	$5[3,6]$	$7[5,8]$
High Triglycerides	$23[21,25]$	$22[22,23]$	$20[17,22]$	$24[22,27]$
High LDL cholesterol	$31[28,33]$	$28[25,30]$	$14[11,16]$	$17[15,20]$
Low HDL cholesterol	$28[26,30]$	$29[27,32]$	$16[14,19]$	$12[10,14]$
Any condition requiring chronic care	$54[52,57]$	$56[53,58]$	$36[33,40]$	$49[46,51]$

Unadjusted and age-adjusted prevalence of HIV and cardio-metabolic risk factors by sex

	Women		Men							
	Unadjusted	Age-adjusted	Unadjusted	Age-adjusted						
	$\%[95 \%$ CI]	$\%[95 \%$ CI]	$\%[95 \%$ CI]	$\%[95 \%$ CI]	$]$		$23[21,24]$	$26[24,28]$	$10[9,11]$	$19[17,21]$
:---	:---:	:---:	:---:	:---:						
HIV +	$40[38,43]$	$39[37,41]$	$30[27,33]$	$37[35,40]$						
Hypertension (whole sample)	$40[38,43]$	$40[37,42]$	$29[26,32]$	$37[35,41]$						
Hypertension (HIV negative)	$42[40,45]$	$43[41,45]$	$4[3,5]$	$6[5,8]$						
High waist circumference	$3[2,4]$	$2[2,3]$	$1[1,2]$	$2[1,3]$						
Probable diabetes	$25[23,27]$	$26[24,28]$	$5[3,6]$	$7[5,8]$						
Obesity	$23[21,25]$	$22[22,23]$	$20[17,22]$	$24[22,27]$						
High Triglycerides	$31[28,33]$	$28[25,30]$	$14[11,16]$	$17[15,20]$						
High LDL cholesterol	$28[26,30]$	$29[27,32]$	$16[14,19]$	$12[10,14]$						
Low HDL cholesterol	$54[52,57]$	$56[53,58]$	$36[33,40]$	$49[46,51]$						
Any condition requiring chronic care										

Association of HIV and ART status with cardio-metabolic risk factors

| | Obesity | High WC | HT | Diabetes | High
 triglycerides | High LDL
 cholesterol | Low HDL |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cholesterol | | | | | | | |

Adjusted for age, education, household SES, physical activity, and alcohol use.

PRELIMINARY HAALSI DATA

INDEPTH Network

Duration of HIV infection and hypertension risk

Covariate $(\mathrm{n}=1131)$	Hypertension Odds Ratio $+95 \% ~ C I$
Age	$1.058(1.044-1.070)$
Female	$1.405(1.029-1.656)$
BMI	$1.058(1.037-1.081)$
Education	$0.985(0.998-1.045)$
Ever Smoker	$1.025(0.659-1.595)$
HIV ≥ 5 years	$0.540(0.392-0.743)$
HIV < 5 years	$1.591(0.659-3.837)$

ART Use \& Access to Care for NCDs

	Ever Use of ART Odds Ratio $+95 \% \mathrm{Cl}$
Ever Measured BP	$1.61(1.14-2.27)$
Ever Measured Blood Sugar	$1.94(1.43-2.63)$
Told to Change Diet	$2.88(1.70-4.88)$
Told to Exercise	$2.39(1.18-4.81)$

* $N=728$ for all models
*All models adjusted for age, sex, BMI and educational attainment

Conclusion

- HIV + infected women not on ART have reduced number of cardio-metabolic risk factors compared to HIV - except for low HDL
- We do not see the expected increase of cardiometabolic risk factors on those women on ART except for higher levels of TG
- Men on ART do not present any increase of CM risk
- People HIV+/Ever on ART have lower levels of high blood pressure after 5 years of infection possibly due to a higher contact with health facilities.

Conclusions (cont.)

- South Africa is experiencing a dual epidemic of cardiometabolic risk factors and HIV with an increasing need for chronic care.

There is a need to integrate all chronic disease services or at
least incorporate NCD preventive advice and BP measurement in HIV programs and HIV testing in NCD services.

