

OpenHDS implementation in Manhiça HDSS: challenges, achievements and lessons learned.

Paulo Filimone (IT Engineer and Software developer)

INDEPTH ISC 2015, Addis Ababa

Outline

- Background
- Reason for implementation OpenHDS in Manhica
- Manhica HDSS study area
- Implementation of OpenHDS in Manhica
- Conclusion
- Acknowledgment

Background

- The Manhica HDSS was established in 1996 and all demographic histories of individuals and household characteristics were collected on paper based forms.
- The demographic data were stored on a relational database based on the Household Registration System (HRS) version 1 implemented in Microsoft Visual FoxPro v5.
- In 2011, a new paper-free system based in PDAs (Cogent Mobile Ident 3) was deployed.
 - ➤Why?
 - The amount of paper forms used were enormous (storage room, mainteinance)
 - Time consuming (data entry process)
 - Lack of data validation and consistence in the field (eg. Migration reconciliation)
- This application was developed using Microsoft Visual Basic .NET forms and a SQLite database, and feeding a central data warehouse based in MySQL version 5.1.

Background

• The paper-free system (baptized Vutisela) was developed by South African company called Inathi.

- The system had limitations including the following:
 - The difficult maintenance of the PDA devices
 - Impossibility of error corrections and perform any software updates due to lack of support by the developers.

• OpenHDS (Open Health and Demographic Surveillance System) was choice to replace Vutisela.

Why OpenHDS was chosen to be implemented in Manhica?

- Only advanced system that was developed for HDSS.
- Free and open-source client-server application designed for HDSS purpose.
- Electronic system that can be implemented using Smartphone's or tablets devices as the client side of the system with the help of the tool ODK(Open Data Kit).
- Customizable system that can answer our local needs.
- Local experiences on using ODK Tools for studies on our site
- Access of technical support and implemented in some sites within INDEPTH sites.

The Manhica HDSS study area

	Before 2015	From 2015
Area (km²)	500	2,380
Households	20,120	37,500
Population	95,000	165,000

Implementation of OpenHDS in Manhica

System requirements: Feasibility and hardware

- Exploratory contacts with SwissTPH to establish a collaboration
- Recruitment of technical staff to implement the system
- Understand the OpenHDS and the needs for implementation in Manhica:
 - ➤ A visit to Rusinga HDSS in Kenya were OpenHDS was implemented by SwissTPH to understand the requirements of systems infrastructures, hardware and documentation.
- Collaboration with the SwissTPH to understand OpenHDS code due to the lack of documentation at the time and requirements for Data migration.

Visit to Rusinga HDSS in Kenya

System customization and development of forms

- Customize the system to our local context:
 - √ Translate the application to Portuguese
 - ✓ Increase one more Location Hierarchy Level to 6 (Country, Province, District, Administrative Post, Locality and Neighborhood)
 - ✓ Integrate the traditional ids (individuals, households) with OpenHDS standard ids(extId's).
 - Traditional Household Number: 3270-192
 - OpenHDS Standard Id for a Household Location: CIB000192
 - ✓ Development of extra forms (immunization, malaria survey, household assets, etc) and customization internal forms.

Data migration

- Amount of Data to migrate:
 - 18 years of events history
 - 49.000 households
 - 260.000 individuals (residents, deaths and out migrated)

Challenges:

- Different Database Structures between Vutisela and OpenHDS
- Data consistency (some errors on events sequences)
- Limited time to correct errors and migrate data (only 2 months)

Solutions:

- We have chosen to just migrate members and household information including last known residency status and death.
- Migration and fertility data will be migrated after the current data collection round

System Setup

• On Server:

- MySQL Server Database (v5.5)
- GNU/Linux Server (Ubuntu 14.04).
- ODK Aggreate (v1.4.4).
- Mirth Connect 3.1.1
- For security reasons all connections to the server are through HTTPS.

On Tablets:

- 7 inch Tablets based on Android version 4.4.2
- A Costumized OpenHDS Tablet Application
- ODK Collect 1.4.4
- GPS Status Application To facilitate GPS Coordinates capture
- 3G Mobile Routers for remote access to the servers using Internet

Human resources and training

- We quickly trained 24 field workers including 6 supervisors.
- Field operations manuals that include tablet and data collection system procedures were developed.

Synchronization and data cleaning

- To transfer the collected data and synchronize with the server we use:
 - Wi-Fi connections on headquarters office (direct server access)
 - 3G Mobile Router for remote access (far from headquarters, via Internet)
- The data is *uploaded* every week and the synchronization is made every 15 days. (*Friday To upload, Monday synchronize/download data*)

Synchronization and data cleaning

- The Mirth App processes the data and sent to OpenHDS to be validated
 - The successfully validated data are stored on OpenHDS Database
 - For the rejected data, logs a generated with the errors description
 - Data managers clean those errors and re-sent to Mirth

Challenges:

- Time for the Data managers team to clean errors
- Crash of Mirth App caused by uploads of large amount of data

• Solution:

- Reasonable staff to handle errors to avoid stopping field data collection
- Improvement of Mirth internal MySQL queries to process the data in small pieces.

Conclusion

- Institutional commitment and financial resources is crucial for implementation of this application.
- OpenHDS or other electronic data capture based on tablets is feasible in rural settings such as Manhiça HDSS but issues like connectivity and powersource must be considered.
- Good planning, especially for hardware acquisition, timelines and data migration is crucial.
- Hiring appropriate human resources to implement this application must be considered carefully due to its complexity.

ACKNOWLEDGMENT

√To all study participants, the local government and community leaders in Manhica district.

✓ The research team: Orvalho Augusto, Agnaldo Samuel, Aura Hunguana, John Jairo Aponte, Ariel Nhacolo, Edgar Jamisse, Vivaldi Nobela, Charfudin Sacoor and Eusébio Macete.

√ The funders: The AECID, Spain; The INDEPTH-Network and the Government of Mozambique.

www.manhica.org